El grupo de investigación GRAFO de laUniversidad Rey Juan Carlos ha desarrollado, junto con el grupo GHEODE de Universidad de Alcalá, un algoritmo capaz de llevar a cabo la estimación precisa de la demanda de energía española a un año vista a partir de una serie de variables macroeconómicas. Los resultados obtenidos han sido publicado en la revista científica Energy Conversion and Management y constatan que la robustez de este algoritmo queda demostrada dada su correcta estimación incluso durante los períodos de crisis económica, donde la demanda de energía es muy difícil de predecir.
El algoritmo propuesto, basado en la metodología conocida como Búsqueda de Vecindad Variable (VNS por su nombre original, Variable Neighborhood Search), es capaz de seleccionar aquellas variables macroeconómicas, de entre las 14 disponibles, que son más relevantes para llevar a cabo la estimación de la demanda de energía.
Todos los ensayos del artículo, titulado Estimación de la demanda total de energía con un algoritmo híbrido basado en búsqueda de vecindad variable y redes de neuronas de aprendizaje rápido, han sido ejecutados en un ordenador de sobremesa común (un Intel Core i7 a 2.67 GHz con 8 GB de RAM), por lo que no es necesario disponer de ninguna equipamiento especial para llevar a cabo la estimación. Los investigadores plantean que el algoritmo propuesto podrá ser de utilidad para las autoridades políticas y expertos en el sector de la energía, que tienen que tratar cada año con la problemática del abastecimiento energético.
El estudio se enmarca en diferentes proyectos de investigación, financiados por el Ministerio de Economía y Competitividad:Nuevos algoritmos híbridos bio-inspirados para problemas de predicción en energías renovables (TIN2014-54583-C2-2-R) yDiseño, implementación y explotación de técnicas heurísticas avanzadas (TIN2015-65460-C2-2).